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Abstract. Ln this paper. we calculate the dynamical exponents of diffusion, dwJdr and ds, on 
a percolation cluster at pr: with no loops. for the square and simple cubic Iatdces by the method 
of speck4 analysis of the transition pmbabiliw matrix. Results show hat ds varies significantly 
with the spatial dimension, unlike in conventional percolation, but the Alexander-Orbach scaling 
relation d, = 24Jdw still holds. Thus it rules out lhe possibility that this scaling relation fails 
for all loopless fractals because of trapping. 

1. Introduction 

The study of diffusion on fractals is important because it gives deeper insight into many 
physical processes such as electrical transport in disordered composites [1,2] and fluid 
flow in porous media. Besides these applications it is also interesting to look at the way in 
which fundamental physical processes like diffusion are modified by the intricate geometrical 
properties of a fractal, as reflected in the non-integral fractal dimensionality. 

It is well established that the mean square displacement of a random walk on a fractal 
in the asymptotic long-time limit is given by a power law 

( R ( t ) 2 )  - t2’& (1) 
where (R(t)’) is the mean square displacement of a t-step random walk and dw is the walk 
dimension. In a regular ordered lattice dw = 2, and equation (1) reduces to the well known 
linear relation between the mean square displacement and time. On a fractal substrate, dw 
is greater than 2, making the mean square displacement depend sublinearly on time. It is 
also well known that the return-to-starting-point probability of the random walk, P ( t ) ,  in 
the long-time limit obeys the power law 

P ( t )  - t-ds’2 (2) 
where ds is called the spectral dimension of the walk. In a regular ordered substrate, 
ds equals the embedding space dimension, d,  but in a fractal medium d, < d ,  because 
progressive displacement of the random walker further from the starting point is hampered 
by its encounter with the irregularities of the medium. 

The Alexander and Orbach scaling law 131 

which relates the dynamical exponents dw and ds to the static exponent d‘ (fractal dimension 
of the fractal) was initially believed to hold true for random walks on all types of fractals. 
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Evidence for the breakdown of this scaling relation on tree-like structures was first given 
by Dhar and Ramaswamy [4] on Eden trees in two dimensions (see also Nakanishi and 
Herrmann 151). It was also recently shown 161 not to hold on the diffusion-limited aggregate 
(DLA), which is essentially loopless on large scales. 

All the above facts seem to suggest that diffusion on loopless fractals falls into a 
qualitatively different category from diffusion on fractals with loops on large length scales. 
Due to the absence of loops the walker gets trapped and is not able to explore the asymptotic 
fractal nature of the underlying structure, which is required for the Alexander-Orbach scaling 
law to hold true. It is important to put this conjecture on a firmer foimdation, since tree- 
like fractals often result from irreversible growth processes. For instance. tree-like fractals 
are formed during various physical processes like dielectric breakdown [7,8], colloidal 
aggregation [9], dendritic growth [IO] and fluid-fluid displacement [ I  I]. 

In this paper, we try to further our understanding of diffusion on treelike structures 
by testing the Alexander-Orbach scaling relation on a different type of loopless fractal, 
namely the loopless percolation cluster. Percolation with loop suppression was first studied 
by Tzschichholz et a1 1121. However, the authors of [12] studied the effects of the removal 
of loops from the percolation cluster by calculating the walk exponent dw, and used the 
Alexander-Orbach scaling relation to determine the other dynamical exponent ds, without 
questioning the validity of the scaling relation. 

A conventional way to make a site percolation cluster is a variant of the breadth-first 
search [13], where one starts from a seed site which is occupied and then considers each 
nearest neighbour of this site for potential occupation with probability p .  If a neighbouring 
site is chosen for occupation, it is added to the cluster and a primary link is established 
with the existing cluster. As this process continues and the cluster grows, it may happen 
that a neighbouring site is occupied and so it is already part of the cluster. Ordinarily if 
such a neighbour exists, then a secondav link is established between it and the site whose 
neighbours axe currently being searched. We have ensured the looplessness of the cluster 
by suppressing these secondary links without altering the geometry (position of all sites) 
of the cluster. Consequently the pc and the static exponents of our cluster are exactly the 
same as those of the conventional critical percolation cluster. We term the cluster which is 
formed by such an algorithm a loopless site percolation cluster. So the essential difference 
between the conventional and loopless site percolation cluster is that, in the former case, all 
occupied nearest neighbours of the underlying lattice are linked, whereas all the secondary 
links are cut in the latter case. An example of loopless percolation cluster is shown in 
figure 1. 

It should be noted that our model of a loopless percolation cluster is different from 
that of [12]. In the latter work, while making the cluster, they blocked those growth sites 
which had the potential to form loops. Thus the location of the sites of the ensuing loopless 
percolation cluster are changed from those of the conventional percolation cluster, which 
makes it necessary to determine the pc and the static exponents of the loopless cluster. In 
particular, in their case, the identification of dr with that of conventional percolation was 
subject to (numerical) verification. In ow case, this is automatic and exact. 

In this paper we are dealing with a two-step process. First we make the loopless 
percolation cluster and then perform the random walk on it. Since the fractal clusters in this 
case are statistical, we then perform a quenched average over the disorder. This process 
involves calculating the quantities of interest on each member of an ensemble of independent 
configurations and then taking the average over these. 
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%h- 
Figure 1. A loopless percolation cluster of IW sites where permitted links among the sites are 
shown. 

2. Spectral analysis 

We first define the transition probability matrix and then give the connection between its 
eigenvalues and the dynamical exponents of the random walk, ds and d,/df. We also give 
a short discussion on the method used in the diagonalization of W. 

The mahix W is such that an element Wij gives the probability that the random walker 
jumps from site j to site i. W, is either zero (corresponding to those sites j which are 
not linked to site i), or a positive number (corresponding to the probability of jumping to 
the linked nearest neighbour). Also, the sum of all the elements of any column of W is 1, 
Corresponding to conservation of the particle probability. The above two properties makes 
the matrix W a Markov matrix. As with all Markov matrices. W has the eigenvalue 1 
corresponding to the stationary state. 

For the sake of simplicity the random walk on the cluster is subject to the 'blind ant 
rule', since the exponents obtained are not sensitive to the rule selected within the same 
universality class. According to the blind ant rule, the random walk has an equal jumping 
probability of l /z  to an available nearest neighbour, where z is the coordination number of 
the underlying lattice, and stays at its current site with the probability of 1 - w / z  (where 
w is the number of linked neighbours of the current site). 

All the information about the geometrical and in particular the fractal nature of the 
cluster is contained in the location of the non-zero elements of W, and the numerical values 
of elements of W are dictated by the transition rules of the random walk. It is possible to 
extract the dynamical exponents characterizing the random walk from the spechum of W. 
In particular the exponent d, may be obtained from the power-law behaviour of the density 
of eigenvalues of W in the limit that h tends to unity [I41 

n(h) - I lnh1(d"2'-' (4) 

where h is an eigenvalue of W and n(h) is the density of eigenvalues. 
The timescale associated with the decay of an eigen-mode is given by I Ink[-'. The 

slowest-decaying eigen-mode which is of interest is the mode corresponding to the second- 
highest eigenvalue h2. The timescale tz corresponding to this mode should characterize the 
timescale for the random walk to travel just enough to explore the entire cluster. This is 
reflected in the fact that the eigenvector corresponding to A2 has its non-zero components 
spread out over the entire cluster. Thus the root-mean-square distance R travelled in time 
t2 must be related to the size of the cluster S by R - S'Id<. From this and equation (I), we 
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Figure 2. Densily of eigenvalues “(A) normaked by the cluster size for Le blind ant against 
I In AI on logarithmic scales. The upper curve corresponds lo d = 3 and the lower to d = 2. 
The symbols A,  0 and Ocorrespond to cluster sizes 400. I000 and 5000, respeclively. 

Table 1. Size and number of  cluster^ used in the disorder averaging for n(A) and A2 

d Clusrer size Number of clusters 

2 (square lattice) 400 2899 
loo0 4500 
5WO 4250 

1000 3000 
5000 moo 

3 (simple cubic lattice) 400 2000 

arrive at the following finite-size scaling law: 

1 InA21 - S”’dl. (5) 
Numerical results supporting this scaling for ordinary percolation were given in [14], and 
for DLA in [6]. 

The eigenvalues near unity are of interest because they determine the asymptotic long- 
time behaviour of the random walk dynamics. Therefore it is necessary to calculate 
accurately the top-lying eigenvalues near unity, but not the entire eigenspectrum of W. 
In this work we have used the ArnoldiSaad algorithm to diagonalize W. In this algorithm 
a smaller subspace containing the information about the eigenvalues near unity is extracted 
from the original W, allowing this subspace to be diagonalized exactly and efficiently [14]. 

In figure 2 the density of eigenvalues per site n(lnA) is plotted against Iln(A)l on 
logarithmic scales in d = 2 and d = 3. It is calculated by binning the eigenvalues obtained 
from the ensemble of clusters in logarithmic bins and then dividing it by the size of the 
cluster, the binwidth and the number of clusters. The number of clusters over which the 
ensemble average is taken and the corresponding cluster sizes are given in table 1. 

Figure 2 shows the data collapse for the clusters of different sizes. The symbol sizes 
are larger than the statistical fluctuations. From the slope of the above plot the value of 
(dJ2) - 1 can be obtained for two and three dimensions. The lines over the data are drawn 
with slopes equal to the estimated value of (6,/2) - 1 .  The values of ds extracted from 
the above data are tabulated in table 2. The estimated errors include the variation of slope 
when the fitting range is varied and not just the error obtained from the least-squares fit. 
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Table 2. Estimates ofd, from "(A) and Wr/dw from A l .  Column 4 was obtained from data in 
column 2 and column 5 was obtained from data in column 3. 

d (dJ2) - I dwldr ds Zdrld, 

2 -0.39*0.01 1.606f0.002 i . 2 2 f O . M  1.245f0.001 
3 -0.36f0.01 1.536j,0.006 i .28fO.M 1.302fO.002 

S (cluster size) 

Figure 3. Log-log plot of the second-highest eigenvalue agaimt the size of the cluster 

In figure 3 the second-highest eigenvalue hz for the different size clusters is plotted 
against the size o f  the cluster on logarithmic scales. The size of the symbols are much 
larger than the satistical fluctuations. The number of clusters used to find the ensemble 
average is the same as for the density of eigenvalues. The Lines joining the points have 
correlation coefficients of 0.999 999 indicating excellent power-law relations. The slope of 
the lines give the exponent ratio d,/df, The estimated errors associated with the slope are 
obtained from the least-squares fit. As there are just four data points available for each d,  
there might be additional sources of errors which cannot be accounted for with the available 
data. These estimates o f  d,/& are also tabulated in table 2. 

The values of d, and Zdr/d, are calculated from the measured values of  (dJ2) - 1 and 
d,/df and are given in columns 4 and 5 of table 2 to make the comparison easier. These 
estimates are consistent with ds = 2df/dw in both two and three dimensions, although 
the values of ds are different from those for ordinary percoIation. Therefore we find that 
Alexander-Orbach relation does hold on loopless percolation cluster in contrast to the Eden 
tree 151 and DLA 161. We also note that our numerical result for 2df/dw in d = 2 is consistent 
with that o f  [12], where d,., was determined by a different method (exact ennumeration in 
the time domain). Thus, the loopless percolation model of [12] in two dimensions seems 
to be in the same universality class as the present model. 

3. Concluslon 

We conclude that the Alexander-Orbach scaling law of equation (3) does not break down 
in all cases of loopless fractal. On loopless fractals, the random walk experiences more 
severe trapping than in fractals with loops due to the absence of pathways which connect 
different branches. This results in higher probability of the walk not exploring the overall 
fractal nature of the cluster. An example of this occurs in the Eden tree, where the cluster 
is compact and df = d, and in the DLA. The smaller value of d8 than 2d'/dw in these cases 
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may suggest that the fractal dimension felt by the random walk is less than the overall 
global fractal dimension of the cluster. The branches of these structures are such that they 
confine the random walker progressively with time. In the case of loopless percolation, 
although the walk is also confined to a branch, the structure of the branch is such that it 
does not provide progressive confinement to the random walker, which allows the walk to 
probe freely the fractal dimension of the branch, which we believe to be the same as that 
of the entire cluster. 

Thus the presence or absence of loops are not the only factors which determine the 
validity of Alexander-Orbach scaling law for diffusion on fractals, but the intricate structure 
of the branches themselves are also of fundamental importance. 
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